
Towards Dynamic Execution Semantics
in Semantic Web Services

Michal Zaremba
Digital Enterprise Research Institute

National University of Ireland, Galway
Galway, Ireland
+353 91 495009

michal.zaremba@deri.org

 Christoph Bussler
Digital Enterprise Research Institute

National University of Ireland, Galway
Galway, Ireland
+353 91 492759

chris.bussler@deri.org

ABSTRACT

The research carried out on the Web Services Execution
Environment (WSMX) provides a Semantic Web Services
reference architecture. The design process of WSMX includes
providing a formal specification of the operational behavior of
the system called execution semantics. In general, the reason to
formally model system behavior during the design process is to
improve understanding of the system, to verify properties of the
model of the designed system and to enable model-driven
check-in of execution of the components. In our research on
WSMX we envisioned dynamic execution semantics, i.e., a
system run-time deployable formal definition of the system
behavior, which can be executed against components that are
part of the system. In this paper we present the dynamic
execution semantics in the Semantic Web Services architecture
implementation of WSMX.

Categories and Subject Descriptors
H.4 [Information System Applications]

R2.7 [Distribution, Maintenance, and Enhancement]

General Terms
Design

Keywords
Semantic Web Services, Architecture, Execution Semantics.

1. INTRODUCTION
Execution semantics, also called operational semantics, is the
formal definition of the operational behavior of a software
system. It describes in a formal language how the system
behaves. Because the meaning of the system to the outside
world consists of its execution behavior, this formal definition is
called 'execution semantics' [11]. In our research on the Web
Services Execution Environment (WSMX)1 we enable dynamic
execution semantics: a deployable formal definition of the
operational behavior of the system which can be used against
components that are part of this system. We realize it by tying
together deployable (pluggable) components and Service

1 ttp://www.wsmx.orgh

Oriented Architecture (SOA) paradigm of business process
definition. In this paper we prefer to use term execution
semantics or system behavior instead of SOA term of business
process, as we believe that “business process” is a too high level
term that is more relevant to the behavior of several systems
rather than functional software components. The dynamic
execution semantics of the system allows modifying and tuning
behavior of the system dynamically during run-time.
The increasing demand for faster software component
development cycles combined with the desire for extending
components functionality and the requirement for the
components decoupling require from system designers to build
adequate application configuration and management
infrastructure into their systems. Without allowing for
reconfiguration, management, and monitoring, software
components fail to deliver to customers their full potential of
usefulness and flexibility. Software systems carrying out critical
operations should be able to host deployable components and to
allow reconfiguring them not only during initialization, but also
during runtime.
One of the characteristics of a Service Oriented Architectures
(SOA) is that they are more process than component oriented. In
a component oriented system, like for example an EJB2 or
CORBA3 architecture, developers used to have objects and
states that system have to manage. In process oriented systems it
is more about communicating with a particular service, passing
to it the required data and information and getting back results.
The system does not really hold states for particular services
that it talks to during process execution, while it continues to
move data between components to achieve some functionality.
On the one hand side, initialization and run-time system
component management is achievable these days with
specifications like for example Java Management Extensions
(JMX)4. On the other hand side, SOA delivers systems where
business processes describing components interactions can be
defined and executed. While many systems have been equipped
with the mechanisms allowing deploying and configuring
system components during its run-time, a mechanism is still
missing to provide the functionality enabling deploying of the
formally defined execution semantics. In existing systems the

2 Enterprise JavaBeans Technology -

http://java.sun.com/products/ejb/
Copyright is held by the author/owner(s).
WWW 2005, May 10--14, 2005, Chiba, Japan.

3 Corba - http://www.corba.org/
4 Java Management Extensions -

http://www.jcp.org/aboutJava/communityprocess/final/jsr003/

reconfiguration and tuning of the behavior of the system is
always taking place during coding time. Similarly to increased
demands for component manageability mechanism, we
recognized additional requirement for the run-time system
execution semantics reconfiguration.
In this paper by dynamic execution semantics term we mean any
formal abstract definition of the system behavior that can be
deployed and executed on a running instance of the system.
Through our research on WSMX we allow users (more
specifically, administrators) of the system to formally specify
new execution semantics and deploy it, delivering a completely
new functionality that was not planned during system
development. The research on dynamic execution semantics is
carried out in the WSMX working group working in a bigger
context of research on the architecture for the Semantic Web
Services5.
This paper is structured as follows. Section 2 presents execution
environment for Semantic Web Services – the WSMX
architecture and its entry points. Section 3 discusses how SOA
can be extended to achieve dynamic execution semantics.
Section 4 summarizes related work. Finally, section 5 presents
our conclusions and further intentions.

2. EXECUTION ENVIRONMENT FOR
SEMANTIC WEB SERVICES
In order to support distributed heterogeneous applications built
by different vendors Web Service technology has been
developed. Existing Web Service cornerstone technologies such
as UDDI [3], WSDL [2] and SOAP [9] provide the basic
functionality for discovering (UDDI), describing Web Service
interfaces (WSDL) and exchanging messages (SOAP) in
heterogeneous, autonomous and distributed systems. In practical
terms, existing Web Services support operations which are
limited to independent calls over a network, fixed collaboration
patterns or predefined supply chains. Web Service technologies
and standards do not provide any functionality to specify how to
include additional semantic information which would allow
using and processing them without any human interactions.
The approach to systems integration based on semantically
enhanced Web Services is nowadays possible through Semantic
Web Services. The Web Services Modeling Ontology (WSMO)6
working group is one of the few research efforts developing a
conceptual model, language and execution environment for
Semantic Web Services (SWSs). Enhancing existing Web
Service standards with semantic markup is standardized through
the WSMO working group and promotes already existing Web
Services standards for semantic-enabled integration. Semantic
markup is exploited to automate the tasks of service discovery,
composition, invocation and interoperation enabling seamless
interoperation between them [4] and keeping human interaction
to minimum.

2.1 Reference Architecture for Semantic
Web Services Infrastructure
The Web Services Execution Environment (WSMX) is one of
three WSMO working groups that provide an execution

5 http://www.wsmx.org
6 Web Services Modeling Ontology (WSMO) –

http://www.wsmo.org

environment called WSMX. WSMX enables discovery,
selection, mediation, invocation and interoperation of SWSs.
The goal of the research on WSMX is to provide a reference
architecture for Semantic Web Service systems. WSMX is based
on the conceptual model provided by the Web Services
Modeling Ontology [14] which describes all aspects related to
SWSs. The mission of the WSMX working group is to define a
Semantic Web Services architecture and to provide a complete
implementation of WSMO. WSMX is a reference
implementation for WSMO providing the proof of its
applicability and usefulness as well as being a vehicle for
driving new projects and partnerships. The goal is to provide
both a test bed for WSMO and to demonstrate the viability of
using WSMO as a model for achieving dynamic interoperation
of SWSs.
The development process for WSMX includes defining its
conceptual model (the WSMO ontology), modeling its
execution semantics (processed by dynamic execution semantic
engine capable of interpreting formal definition of system
behavior) and designing the WSMX system architecture. The
WSMX working group also defines component interfaces,
designs particular components and provides their
implementation. The research through WSMX working group
provide guidelines and justification for a general SWS
architecture, while at the same time development team provides
reference implementation of the system7 [10].
Apart from the cornerstone SWS functionalities that must be
available with any execution environment for SWSs, such as
discovery, mediation or invocation the working group also
addresses some more specific system functionalities while
developing the WSMX system (although they remain out of
scope of WSMO itself, as WSMO is only concerned with the
external behavior of Semantic Web Services). One of these
additional features, which are currently under development in
WSMX is a dynamic execution semantics.

2.2 WSMX as SOA
WSMX is a Service Oriented Architecture (SOA), which means
that it is a software system consisting of a set of collaborating
software components with well defined interfaces that together
perform a task. These components do not necessarily execute in
the same address space, not even necessarily in different address
spaces on the same machine. Instead, they may very well
execute on different network locations communicating over a
network connections through multiple protocols. This situation
creates its own unique demands, namely latency, memory
access, concurrency and failure of subsystems that the
architecture must be able to cope with. All these aspects are
addressed in subsequent phases while designing and
implementing WSMX. SOAs differentiate themselves from
other distributed systems through the concept of loose coupling
brought to its extremes. Strong decoupling of the various
components, which realize an e-commerce application is also
one of two major features of WSMO. In WSMX, conceptually
independent pieces of functionality have been grouped into
components. Each of the WSMX components provides services
– each of which is a logical unit of system code, application
code, and persistence layers, in short, anything that as a unit can
carry out an operation. Services are often characterized by

7 WSMX at sourceforge – http://sourceforge.net/projects/wsmx

exactly these operations that they provide to other components.
The WSMX architecture and its loosely coupled components are
presented in Figure 1.

For each component a separate public interface has been
defined, that is known by all other components provided with
the reference implementation or by components provided by
independent components providers. Components can be
plugged-in and plugged-out from the system both at startup as
well as during run-time. The components that are provided with
the WSMX reference implementation can be easily replaced by
other components, e.g., those provided by third parties. At this
stage we are still working with the standardized infomodel for
system interfaces, because we depend on one of design
principles of SOA, which demands separation of interface from
the implementation (and that is why it requires to known
interfaces before system execution). To fully achieve dynamic
execution semantics we must be able to deploy interfaces to
running system, so both new components with new interfaces
and new executions semantics can be defined and executed. This
aspect has been not yet addressed.
The WSMX reference implementation provides the complete
implementation of all of the components and users of WSMX
may still decide to use components delivered by other providers
if they chose to prefer those.
In distributed SOA systems the communication between
components is taking place through events. Although we also
recommend building the communication inside the Semantic
Web Services architecture on the event paradigm, the system
components can be coordinated without events. It enables the
best practice of implementation abstraction through interfaces,
by which the implementation of a service must be of no concern
to the client of the service. All of this together results in

increased flexibility, better extensibility and dramatically
improved reusability. However, even if the right architectural
decisions are taken, it is not always easy to achieve all of these

WSMX

S
ystem

 Interface

 WSMX Manager
WSMX Manager Core

Administration Framework Interface

Component
Wrapper

New
Component

New Component
Interface

D
ata and C

om
m

unication P
rotocols Adapters

A
dapter 1

A
dapter 2

A
dapter n

...

Grounding

CM
Wrapper

Comm
Manager

Invoker & Receiver
Interface

Invoker Receiver

RM
Wrapper

Resource
Manager

RM
Interface

Parser
Wrapper

Parser

Parser
Interface

Discovery
Wrapper

Discovery

Discovery
Interface

Selector
Wrapper

Selector

Selector
Interface

DM
Wrapper

Data
Mediator

DM
Interface

PM
Wrapper

Process
Mediator

PM
Interface

Choreography
Wrapper

Choreography

Choreography
Interface

Orchestration
Wrapper

Orchestration

Orchestration
Interface

Reasoner Interface

Reasoner

WSMO Reasoner

Reasoner Interface

Reasoner

Flora/XSB

Resource Manager Interface

WSMO Objects
Datastore

Datastore

NonWSMO
Objects

Datastore

Datastore

WSMT – Web Services Modelling Toolkit

Service
Providers

Web
Service 1

Web
Service 2

Web
Service p

...

Service
Requesters

Back-end
application 1

Back-end
application 2

Back-end
application n

...

Agent 1
acting on
behalf of
user a

Agent 2
acting on
behalf of
user b

Agent 3
acting on
behalf of
user m

...

WSML EditorWSMX Monitor Choreography EditorWSMX Managment WSMX Mediation

 Figure 1. Architecture for Semantic Web Services

goals simultaneously. Scalability and proper service structuring
are crucial and have to be taken into account, too.

2.3 System External Behavior
Currently defined functionality provided by the WSMX system
as a whole can be described in terms of its entry points. Entry
points are the standardized interfaces of WSMX enabling the
communication with any external entities requesting services.
More details on system functionality can be found in an
execution semantics document [16], that formally specify the
desired operational behavior of WSMX, serving not only as a
reference for developers but also as a means of validation and
model-checking. While execution semantic defined through
WSMX working group remains static, dynamic execution
semantics mechanism enables extending behavior of the system
and adding new entry points with each new execution semantics
deployed.
In the current version of the WSMX system we define one
formal execution semantics with four possible branches, each of
them starting with one entry point. These four entry points must
be available in each working instance of system, which is
WSMX compliant. Entry points also define the required
functionality of any WSMX compliant system. By selecting a
given entry point the predefined execution semantics is
triggered. These four obligatory entry points enable the
execution of any of four available execution semantics:
realiseGoal(Goal,
OntologyInstance):Confirmation

Any external entity which expects to get its goal realized
without back and forth interactions (communication) with

WSMX system might wish to provide a formal description of a
Goal (in WSMO terms) and an instance of Ontology (some data
required for processing of a Web Service). This quite simplified
scenario assumes that service requester knows even before the
service discovery all the data that might be required by the
service provider. WSMX selects and executes the Web Service
on behalf of service requester. The service requester might
receive a final Confirmation, but this step is not obligatory
(many entities that might wish their goals to be realized by
WSMX system might not have permanent addressing, so there is
no possibility to make an asynchronous call back to them
returning the final result of the service invocation).
receiveGoal(Goal):WebService[]

The receiveGoal entry point addresses the scenario when a
service requester consults WSMX to learn about Web Services
that satisfy its Goal. In this asynchronous call the service
requester provides a Goal and expects to get back a set of Web
Services.
receiveMessage(OntologyInstance,
WebServiceID, ChoreographyID):Confirmation

Once a service requester knows the Web Service that he wants
to use, it must carry back and forth a conversation with the
WSMX system in order to provide all the necessary data to
execute this Web Service. By giving fragments of Ontology
Instances (e.g. business documents such as Catalogue Items or
Purchase Orders in a given ontology) and a reference to the Web
Service and Choreography (only if choreography has been
instantiated already) that is to be used, it provides all data
required by Web Service of service provider.
storeEntity(WSMOEntity):Confirmation

The StoreEntity entry point provides an administration interface
for the system enabling to store any WSMO related entities (like
Web Services, Goals, Ontologies) and to make them available
for other users of the WSMX system.
In addition to these four entry points we assume that each
instance of a Semantic Web Services system provides an engine
to support dynamic execution semantics enabling execution of
any formal description of system behavior. In this way we can
also define additional functionality.

3. REALISING DYNAMIC EXECUTION
SEMANTICS
Service Oriented Architectures have weaknesses that can be
overcome by a dynamic execution semantics functionality. The
following subsections will discuss these weaknesses and show
how dynamic execution semantics can be applied for any
distributed system.

3.1 Advantages and Weaknesses of Service
Oriented Architectures
Service Oriented Architecture (SOA) is a new architectural
paradigm enabling integration of heterogonous applications by
decoupling functionality provided by distributed software
components. Systems which are going to use this functionality
bind components at a run-time allowing them to cooperate on
the process level.
SOA is an architectural paradigm in which two computing
entities interact in such a way that one entity is able to perform
requested tasks on behalf of another entity. Traditionally,

achieving a complete functionality of a given system requires
many building blocks to be integrated together in one complete
software package. Such an approach usually delivers very
monolithic software, where code to accomplish integration of
application functions is mixed together with code performing
these functions. In SOA these building blocks become
independent software applications offering their functionality in
form of services to any entity (software system), which requires
them. A requesting party is capable to use this functionality
without knowing the details of this service internal
implementations, because the whole functionality is offered
through the well defined interfaces (in this moment mostly Web
Services standards are used for this purpose, but also XML over
HTTP and JMS may be used to achieve similar results [5]). To
meet demands of SOAs, software packages must be modularized
in order to enable functionality reusability across various
systems. The SOA approach to architecture enables
interoperability between systems and platforms, which have
been designed and implemented independently from each other,
use different programming languages, operating system,
hardware configurations etc. Well defined interfaces of
components allow for an interaction like style of communication
between particular software entities.
SOA allows software systems to be more agile and more
responsive by adapting more quickly to changing business
needs. With the growing importance of Internet and e-business
style of interaction between companies, the SOA approach to
architecture offers a promising paradigm to integrate existing
back-end application systems and separated processes across the
whole value chains of companies from suppliers to final
customers of the product or service.
The development of a traditional system usually follows the four
steps conventional path of requirements analysis, designing
software, implementing and testing. Applying formal methods
during software design such as modeling formal execution
semantics improves the result of the design allowing verifying a
software system before it is build. Having a formal definition of
the system behavior, the architecture can be designed and
implement ensuring that no design flaws, livelocks or deadlocks
will be ever encountered during system execution. The formal
definition of execution semantics allows revealing ambiguity,
incompleteness and inconsistency before the actual system
implementation [15]. Although the traditional approach to
system development enhances developers’ understanding of the
system before it is implemented, the new requirements for more
agile and adaptive architectures demand from system designers
to deliver systems where flexible execution semantics can be
defined and deployed on the existing system without the need to
rewrite once written core system code. In mission critical
applications which have to run 24/7 it might be not even feasible
to shut down the system, while new executions semantics is
deployed.
In a component-based system different components must
cooperate together to achieve the required functionality of the
system. In SOA architecture to make this coordination a reality,
software developers usually provide a central control
component, which requests functionality from other
components. The main task of this management component is to
control and coordinate the execution of other components.
Usually it is responsible for providing all the necessary data
required by components to fulfill its tasks. The control flow

among components of the system remains hard-coded into
management component. Every time the execution semantics of
the system is getting updated the management component has to
be reprogrammed and recompiled.
In distributed systems, where components might be provided by
different vendors the whole situation becomes even more
complicated. Including one additional component or even
changing only an interface of existing component requires the
whole system to be formally verified again. Management
component might have no influence on a provider of a
component. That is why it becomes necessary to formally verify
if new execution semantics defined for this system can be
executed with the given set of components. It should be possible
to describe the semantic requirements of a management
component and to match it with the semantic capabilities of
other components. We do not claim here that such matching
should happen any time a process is going to be executed, but
only when a new execution semantics definition is available and
should be deployed on a given infrastructure. From the list of
known components, the management component should only
connect the ones that are capable to this request.
Based on the decoupling requirement of SOA systems, the
functionality of platforms that are based on these concept
remains restricted. The system focuses on supporting process-
service binding mechanism to achieve functionality offered by
distributed components. We perceive the current potential of
SOA architectures still being inadequate to address the
requirements of Semantic Web Services systems. In order to
enable fully agile and responsive systems adapting to
requirements of service requesters and providers, we envision
that the execution semantics of such a platform should be
adaptable to particular scenarios, which remains unpredictable
during design time of the system. While SOA allows on
modifying business processes to achieve some functionality, it
remains silent on dynamic deployment of such a process in
running instance of the system. To achieve dynamic execution
semantics we propose to extend SOA by allowing for model-
driven execution of system components. Such execution
semantics must be not only able to be applied at the design or
startup time of the system, but must be executable in a running
instance of the system as well. We apply and test this approach
to execution semantics in our reference implementation of
Semantic Web Services architecture.

3.2 Use Case for Dynamic Execution
Semantics
The first WSMX implementation included only one possible
execution semantic which was hard-coded with components of
the system. In the second implementation we already included
four possible branches which can be executed during run time of
the system. Subsequent progress on the system development is
possible by revealing new requirements and use cases provided
by potential users of the system. As these use cases remain
confidential and cannot be presented in this paper a similar use
case is shown to picture the requirements for the dynamic
execution semantics.

The potential application used by the dealer for several
insurance companies automates the process of collecting
insurance information from them, taking into account that the
data can be accessed by executing Semantic Web Services. This
aggregated information is provided to users, according to the
data that they have filled-in in appropriate query forms. While
company can use such components like data or process mediator
from any component provider, it does care that discovery engine
is hosted locally by them and only this particular discovery
engine is used to provide list of available services. The company
also wants to make sure that nobody else except them can use
this discovery engine. Additionally to that they like to provide
themselves an additional component used to carry out the
evaluation process of some of the quotes properties and
modifying them before they are returned to user (e.g. adding
they own margin on top of quote returned by insurance
company). With dynamic execution semantics as presented in
this paper, we can restrict process execution to particular set or
even individual components (by creating new types of events
that can be only consumed by these components) and we can
easily add new components, which were not considered during
design time of the system.

3.3 Dynamic Execution Semantics Engine
As mentioned before, during the design process of WSMX
several steps have been undertaken, including describing system
conceptual model, specifying the formal system execution
semantics and defining and designing its architecture. By
providing the conceptual model the common reference
vocabulary for the development team has been defined, which
has been used during different phases of the project. Execution
semantics, the formal specification of the operational behavior is
normally used for a number of reasons during software
development. As described in [16] in the context of WSMX we
were initially interested in modeling the execution semantics of
WSMX in such a way that

(1) developers can understand the system themselves,

(2) certain properties of the system can be inferred,

(3) model-driven execution of the system’s components
can be enabled.

The architecture definition has delivered a detailed description
of the overall system, components interfaces and specification
of the functionality expected from particular components.

One of the key design decisions we undertake for WSMX has
been to keep individual components decoupled from each other
and to enable components distribution across the network. The
development of the high-speed networks makes it possible to
distribute services across various machines achieving complete
functionality by combining these partitioned and distributed
resources. The effective way to exploit advantages provided by
network and achieve system scalability requires partition system
functionality into coarse-grained components with well defined
interfaces which can provide a small but complete functionality
required by this system.

An initial version of WSMX included
execution semantic which was hard-coded
the system. This approach very quickly sho
of the WSMX design as revealed by new r
cases provided by potential users of the sy
refine our initial architecture approach and
mechanism to incorporate new compo
enabling adding and removing any new f
execution semantics describing operation
system without the need to recompile the
time such new execution semantic becomes

The first step to enable new execution sem
requires to design the execution semantics
terminology - “business processes”) groupi
in pursuit of a common goal. While for W
nets [1], we have not restricted dynamic exe
specific formalism. The tool we are usi
makes it possible to model so-called h
extending classical Petri nets with hierarc
The tool used for definition of business p
possible to verify certain properties of the
some simple properties such as syn
unreachable states or unsatisfiable con
compose a process from a set of componen
abstract declaration that a service might b
component by using known service interf
infomodel (see figure 2).

Actually we do not bind the process to t
which is going to be invoked during run-tim
formalism to define abstract business proc
have started using YAWL [3], a novel wo
language. It builds on the formal foundation

Discover Web Services

Create Choreography

Created

Discover Services

Mediate Data

Mediate Data

Return Mediated Data

Return Mediated Data

Return Web Services

Check Choreography

Confirmed

Call Invoker

Confirmed

Start

End

s
 Figure 2. Define execution semantic
only one possible
 into components of
wed the weaknesses
equirements and use
stem. We decided to
we accommodated a

nents and methods
ormal definitions of
al behavior of the

 whole platform any
 available.

antics in the system
 branch (or in SOA

ng business activities
SMX we used Petri
cution engine to any

ng, CPNTools [13],
igh-level Petri-nets,
hy, color and time.
rocess must make it
model; it must check
tactical correctness,
ditions. While we
ts, we only make an

e requested from the
ace from the system

he concrete service,
e. As an underlying

esses in WSMX we
rkflow management
s of Petri nets but is

 specifically designed for usability, which could be an advantage
over a purely Petri net based approach. The system includes an
enactment engine and a design tool, but the system itself is
however quite young and not yet mature. We have already made
some initial tests in using YAWL as system behavior definition
formalism for WSMX.

Besides process definition, we recognized another requirement
to enable dynamic execution semantics: the ability to plug-in
and plug-out components at runtime. In WSMX we enable
reconfiguration, management, and monitoring of available
software components. We maintain that the system must be
capable to host deployable components and to reconfigure them
during initialization and as during runtime (see listing 1 for
system configuration file definition). This configuration
mechanism is used during system start-up to pick up all known
components. Additionally to it, during run time new components
can be added and old components can be removed.
<?xml version="1.0" encoding="UTF-8"?>
<sc:wsmxconfiguration
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:sc="http://www.wsmx.org/simpleconfiguration"
 systemcodebase="/path/to/distribution"
 port="9000">
 <domain name="components">
 <mbean name="Discovery"
 class="ie.deri.wsmx.discovery.wrapper.Discovery"
 componentcodebase="./discovery.wsmx"
 eventtypes="resourcemanager.response,
 wsmx.discovery.wsmlmessage.validated">
 <property name="vendor">
 wsmx.org
 </property>
 </mbean>
 <mbean name="ResourceManager"

class="ie.deri.wsmx.dbManager.wrapper.ResourceManager"
 componentcodebase="./resourcemanager.wsmx"

eventtypes="wsmx.registration.wsmlmessage.validated">
 <property name="vendor">
 wsmx.org
 </property>
 </mbean>
 <mbean name="CommunicationManager"

class="ie.deri.wsmx.communicationmanager.wrapper.CommunicationMan
ager"
 componentcodebase="./communicationmanager.wsmx"

eventtypes="wsmx.registration.wsmlmessage.persisted">
 <property name="vendor">
 wsmx.org
 </property>
 </mbean>
 <mbean name="Mediator"
 class="ie.deri.wsmx.mediator.wrapper.Mediator"
 componentcodebase="./mediator.wsmx"
 eventtypes="wsmx.void">
 <property name="vendor">
 wsmx.org
 </property>
 </mbean>
 <mbean name="Choreography"

class="ie.deri.wsmx.choreography.wrapper.Choreography"
 componentcodebase="./choreography.wsmx"
 eventtypes="wsmx.void">
 <property name="vendor">
 wsmx.org
 </property>
 </mbean>
 <mbean name="Parser"
 class="ie.deri.wsmx.parser.wrapper.Parser"
 componentcodebase="./parser.wsmx"

eventtypes="wsmx.registration.wsmlmessage.nonvalidated,

wsmx.discovery.wsmlmessage.nonvalidated,

wsmx.invocation.wsmlmessage.nonvalidated">
 <property name="vendor">
 wsmx.org
 </property>
 </mbean>
 </domain>
</sc:wsmxconfiguration>

The persistent configuration support is responsible for loading
the various components into memory at startup time. Different
versions of WSMX provide different degrees of configuration
support, early releases provide only basic, centralized support
while later releases are planned to have more sophisticated and
decentralized configuration systems to provide more flexibility.
The system must be able to cope with the additional complexity
caused by the introduction of features such as component
injection or persistence of metadata objects.

Having an abstract process definition and components installed
in the system, we generate wrappers for components (see figure
3). The purpose of the wrapper is to separate components from
transport layer for events. As mentioned before, although we
also recommend building the communication inside Semantic
Web Services architecture based on event paradigm, the system
components can be coordinated without events. WSMX is an
event-based system, consisting of many wrappers that
communicate using events. Wrappers utilze an asynchronous
form of communication. One wrapper raises an event with some
message content and another wrapper can at some point in time
consume this event and react upon it. Components offering
services to WSMX remain unaware of event infrastructure,
while they solely communicate with their own wrappers, while
event consumptions and production is taking place only on a
wrapper level. Transport mechanism has been also decoupled
from the system by using Transport interface, which hides
details of event transport mechanism.

Figure 3. Creating components wrappers and
instantiating process context Listing 1. WSMX components configuration

WSMX is an improved SOA, what means that it is a system
composed of a set of distributed, loosely coupled components,
but without centrally organized “business process” management
unit. System components do not cooperate based on hard-wired
bindings like in traditional systems, but the communication is
based on events which are carried in by the transportation layer.
That is, if some functionality is required from the other
component, then event that represents request is created and
published. Components, which wish to process given types of
requests, subscribe to given event types, so whenever new
events appear in a transport layer, they might be picked up,
processed and consumed. In our current approach events
exchange is conducted via transportation layer, which is based
on Tuple Space [8], but is going to be changed in the future to
Triple Space [7] mechanism. We enable seamless interaction
between components without direct events exchange between
them. Interaction is carried out like in the messaging systems by
exploiting publish-subscribe mechanism.

Figure 4 presents the complete architecture enabling decoupling
of components from execution semantics in the Semantic Web
Services architecture. The deployment of any new execution
semantics will regenerate wrappers for the set of components.
Based on execution semantics definition, these wrappers will be
only capable to consume and produce particular types of events.
In a running system, the dynamic execution semantics is
achieved by mapping abstract system behavior into real event
infrastructure of the system.

To assure that there are no design flaws (like livelocks or
deadlocks) the formal verification of the model must take place
before model is deployed to the system.

4. RELATED WORK
Beside WSMX there are other software tools providing support
for execution of Semantic Web Services having their roots in
OWL-S, Meteor-S and WSMO initiatives. There are also several
commercial integration platforms capable to overcome
integration problems between heterogeneous systems. While
none of them offers dynamic execution semantics, their
functionality remains similar to functionality provided by
WSMX, however, just on a syntactical level. In this section we
provide a short overview of them.
IRS III is a platform developed by the Knowledge Media
Institute at the Open University, capable of handling WSMO
and OWL-S based Semantic Web Services [6]. In the IRS III
design environment a provider of a service creates a WSMO
based service description and publishes it against its service on
the IRS III server. Having the service available, a goal can be
described and bound with existing Web Service using a
mediator. Although this approach sounds quite limiting as Web
Services must be known to IRS III server at design time – it is
different to WSMX when they are not known until run time. An
attempt has been already undertaken to bring interoperability
between WSMX and IRS III - currently two major WSMO
compliant Semantic Web Services platforms.
Meteor-S builds on existing Web Services technologies
providing a framework for Web Services composition and
discovery [12]. Meteor-S is based on a language predecessor of
OWL-S, which is used by OWL-S. There is no comprehensive
strategy for development of Meteor-S server like in the case of
WSMX or IRS III. Rather there are multiply efforts to address

MediatorDiscoveryChoreography Communication
Manager

“Business” Process – Distributed Workflow

Choreography
Wrapper

Discovery
Wrapper

implements
Mediator
Interface

Event and Notification Distribution/Delivery Mechanism

Data Mediator
Wrapper

Communication
Manager Wrapper

events events eventsnotifications notifications notifications
notificationsevents

Figure 4. Realisation of dynamic execution semantics in Semantic Web Services architecture

different aspects of Semantic Web Services. While Meteor-S
tools are equal to WSMX components, its hard to talk about any
execution semantics of Meteor-S as no system like in case of
WSMX really exist. The main tool called MWSAF provides an
ontology store, a translator a library and a matcher library.
Another tool Meteor-S WSDI is a peer-to-peer infrastructure for
accessing and annotating multiple registries.
OWL-S [4] is a comparable effort to WSMO initiative
attempting to define an ontology for Semantic Web Services.
Similarly to Meteor-S there are multiply tools available, but
there is no integrated strategy regarding the development of a
complete infrastructure for execution of OWL-S Web Services.
There is a composer, matchmaker or editor, but a run-time
infrastructure capable to handle execution and coordination
between all these components is not yet available. There are
some related efforts to WSMX to build OWL-S virtual machine
and Mindswap’s OWL-S API which can be used to develop and
execute OWL-S services, but particular OWL-S tools are not yet
“coupled” with this infrastructure. As there is no complete
OWL-S infrastructure with all the tools connecting to it, so
consequently no dynamic execution semantics can be defined
for it and executed.
Besides these efforts, one can imagine building system with
similar functionality offered by WSMX out of components
using existing commercial integration platforms such as for
example BizTalk Server 20048, WebSphere Integration Suite9,
Application Server 10g10 and others. Currently none of these
tools supports semantic annotations and none of them allows
mediating between ontology instances. While most of them is

8 BizTalk Server - http://www.microsoft.com/biztalk/
9 WebSphere Integration Suite - http://www-

306.ibm.com/software/websphere/
10 Application Server 10g10- http://www.oracle.com/appserve

modularized and new components can be added easily (even
during run time), none of them really address issue of dynamic
execution semantics.

5. CONCLUSIONS
Specifying the execution semantics of WSMX is part of the
software development process. We have specified the execution
semantics of WSMX with three objectives: to help developers
understand the system, to be able to prove some properties of
the model and to enable model-driven execution of components.
In this paper we present our initial approach to dynamic
executing semantics aiming at designing such an infrastructure
for WSMX system. While this is a big step towards enabling
flexible definition of system behavior, there are still some
aspects that need to be addressed. Currently components
interfaces are still defined solely by java interfaces. To provide
fully enabled dynamic executions semantics as envisioned in
this paper, preferably services provided by components will
have descriptions in machine-processable meta-data.

6. ACKNOWLEDGMENTS
This work is supported by the SFI (Science Foundation Ireland)
under the DERI-Lion project and by the European Commission
under the projects DIP, Knowledge Web, SEKT, SWWS, and
Esperonto, and by the Vienna city government under the
CoOperate program. The authors thank all members of the
WSMX (http://www.wsmx.org/) working group for fruitful
discussions on this document.

7. REFERENCES

[1] W.M.P. Van Der Aalst, K.M. Van Hee and G.J. Houben,

Modelling workflow management systems with high-level
Petri nets. in Proceedings of the second Workshop on
Computer-Supported Cooperative Work, Petri nets and
related formalisms, (1994).

[2] Erik Christensen, Francisco Curbera, Greg Meredith and
Sanjiva Weerawarana. Web Services Description
Language (WSDL) 1.1, 2001. http://www.w3.org/TR/wsdl

[3] Luc Clement, Andrew Hately, Claus Von Riegen and
Tony Rogers. UDDI version 3.0, 2004.
http://uddi.org/pubs/uddi_v3.htm

[4] The Owl Service Coalition. OWL-S 1.1 beta release,
2004. http://www.daml.org/services/owl-s/1.1B

[5] Mark Colan. You Have Critical SOA Questions? We have
Answers!, ebizQ, 2004. http://www.ebizq.net

[6] John Domingue, Liliana Cabral, Farshad Hakimpour,
Denilson Sell and Enrico Motta, IRS-III: A Platform and
Infrastructure for Creating WSMO-based Semantic Web
Services. in WIW 2004, WSMO Implementation Workshop
2004, (2004).

[7] Dieter Fensel, Triple-based Computing. in Semantic Web
Services: Preparing to Meet the World of Business
Applications a workshop at the International Semantic
Web Conference (ISWC2004), (Japan, 2004).

[8] David Gerlernter Mirror Worlds. Oxford University Press,
1992.

[9] Xml Protocol Working Group. SOAP version 1.2, 2003.
[10] Michal Zaremba Matthew Moran, Adrian Mocan and

Christoph Bussler, Using WSMX to bind Requester &
Provider at Runtime when Executing Semantic Web

Services. in WIW 2004 WSMO Implementation Workshop
2004, (2004).

[11] Eyal Oren, WSMX Execution Semantics - Executable
Software Specification. in WIW 2004 WSMO
Implementation Workshop 2004, (Frankfurt, 2004).

[12] A. Patil, S. Oundhakar, A. Sheth and K. Verma, Semantic
web services: Meteor-S Web Service Annotation
Framework. in 13th International Conference on World
Wide Web, (2004).

[13] A.V. Rantzer, L.Wells, H.M. Lassen, M. Laursen, J.F.
Qvortrup, M.S. Stissing, M. Westergaard, S. Christensen
and K. Jensen, Cpn tools for editing, simulating and
analysing coloured petri nets. in 24th International
Conference, ICATPN 2003, (2003), 450-462.

[14] Dumitru Roman, Holger Lausen and Uwe Keller. Web
Service Modeling Ontology (WSMO), 2004.
http://www.wsmo.org/2004/d2/v1.0/

[15] Jeanette Wing A Specifier's Introduction to Formal
Methods. IEEE Computer, 23. 8-26.

[16] Maciej Zaremba and Eyal Oren. WSMX Execution
Semantics, 2004.
http://www.wsmo.org/2005/d13/d13.2/v0.2/

